

Study Guide

For Placement into Chemistry 20 (CHEM 181)

Important Information

The Chemistry Placement test is a free assessment designed for Academic Upgrading placement purposes only. No section of the test may be used for admission to any SAIT program other than Academic Upgrading. The Chemistry Placement Test is not accepted for admission to any other institution.

- The passing mark required for eligibility to register in CHEM 181 (Chemistry 20) is 60%.
- We aim to put students' passing marks on our system within 2 business days of successful completion of the test.
- Students who have been accepted into the Academic Upgrading program can register for the course they are placed into once we have granted them permission based on their passing grades.
- Students who have already taken and passed SAIT's Academic Upgrading courses in Math and Physics ARE NOT required to take a placement test.

Chemistry Placement Study Guide

This study guide is designed to prepare students for the Academic Upgrading Chemistry Placement test for entry into CHEM 181 (Chemistry 20). Please use the following practice material from Science 10 to prepare for your online placement test to meet eligibility for CHEM 181. An answer key is included at the end of this guide.

This test is for placement into Chemistry 20 equivalency (CHEM 181):

- The study guide consists of 35 questions for practice. The actual test will consist of 20 questions. You may use the solubility table and periodic table of elements as provided at the end of the guide.
- A data booklet including the periodic table will be provided. Students will require a pen and paper for the calculation-based questions.
- Students should allow for 60 minutes to complete the test. An additional 30 minutes has been added to allow for accommodated time, for a total test time of 90 minutes.
- A passing mark of 60% or greater is required in this test for eligibility to register in CHEM 181.

- This test is to be written in the Testing Centre.
- You may choose to utilize a Science 10 Study Guide from the Calgary Public Library or bookstore for additional review.

SAIT Academic Upgrading Course Sequence

Multiple Choice

- 1. John Dalton proposed four ideas in his model of the atom. Which of the following is **not** part of his model?
 - a) all matter is made of small indivisible particles
 - b) atoms of different elements have different properties
 - c) atoms are never created or destroyed during a chemical reaction
 - d) all the atoms of an element are identical in properties such as size and mass
- 2. A certain chemical family is composed of elements that are soft, shiny, very reactive with water, and form ions with a charge of 1+. This family could be
 - a) the halogens
 - b) the noble gases
 - c) the alkali metals
 - d) the alkaline-earth metals
- 3. Which column in the periodic table contains elements with one electron in their valence energy level?
 - a) first on the left
 - b) first on the right
 - c) second from the left
 - d) second from the right
- 4. Which two particles are approximately equal in mass?
 - a) proton and neutron
 - b) proton and electron
 - c) neutron and electron
 - d) none of these
- 5. The magnesium ion, Mg⁺², has
 - a) 10 electrons and 10 protons
 - b) 10 electrons and 12 protons
 - c) 12 electrons and 10 protons
 - d) 12 electrons and 12 protons
- 6. An atom of fluorine has 9 protons, 10 neutrons, and 9 electrons. Its mass number is
 - a) 9
 - b) 10
 - c) 18
 - d) 19

- 7. What is the formula for sodium carbonate?
 - a) $S_2CO_{3(s)}$
 - b) NaCO_(s)
 - c) $Na_2CO_{3(s)}$
 - d) Na₃CO_{3(s)}
- 8. What is the formula for aluminum hydroxide?
 - a) $AlOH_{3(s)}$
 - b) $Al_3OH_{(s)}$
 - c) $Al(OH)_{3(s)}$
 - d) $Al(III) \stackrel{\circ}{OH}_{(s)}$
- 9. Which of the following is an ionic compound?
 - a) $HCl_{(aq)}$
 - b) KCl_(s)
 - c) $ClO_{3(g)}$
 - d) $NCl_{3(g)}$
- 10. Which of the following properties are characteristic of an ionic compound?
 - I It is malleable.
 - II It is solid at room temperature.
 - III Its solution conducts electricity.
 - a) I and II only
 - b) I and III only
 - c) II and III only
 - d) I, II, and III
- 11. Which of the following are very soluble?
 - I Na₂S
 - II CuBr
 - III Sr(OH)₂
 - a) I and II only
 - b) I and III only
 - c) II and III only
 - d) I, II, and III

12.	Which of the following is a general property of bases? a) taste sour b) turn litmus red c) conduct electricity d) react with Mg to produce hydrogen bubbles
	Which of the following is an acid? a) $CH_{4(g)}$ b) $K_3PO_{4(aq)}$ c) $H_3PO_{4(aq)}$ d) $NaOH_{(aq)}$
14.	Consider the following reaction: NaOH_{(aq)} +Al(NO_3)_{3(aq)} \rightarrow Al(OH)_{3(s)} +NaNO_{3(aq)} The coefficient for Al(NO_3)_3 when the above equation is balanced is a) 1 b) 2 c) 3 d) 4
15.	The following reaction takes place when gasoline reacts with air: $ 2 C_{6}H_{14(l)} + 19 O_{2(g)} \rightarrow 12 CO_{2(g)} + 14 H_{2}O_{(g)} $ (insert earth-shattering kaboom! noise here.) This reaction is a) single replacement reaction b) double replacement reaction c) hydrocarbon combustion reaction d) decomposition reaction
	ction II. Skills
	me or give the formula for each compound in questions 24 to 33. (1 mark each)
	16. CaBr _{2(s)}
	17. Au ₃ PO _{4(s)}
	18. N ₂ O _{4(g)}
	19. NH _{3(s)} 20. H ₂ SO _{4(aq)}
	21. lead(IV) sulfide
	22. methane

23. sulfur trioxide	
24. hydrochloric acid	
25. iron(II) nitride	

Section III. Written Response

Balance the equations in questions 31, 32, and 33.

26. ____Na_{(s)} + ___O_{2(g)}
$$\rightarrow$$
 ____Na_2O_{(s)}
27. . ___C₈H_{16(l)} + ___O_{2(g)} \rightarrow ____CO_{2(g)} + ___H₂O_(g)
28. ___NH_{3(g)} + ___O_{2(g)} \rightarrow ___NO_(g) + ___H₂O_(l)

Predict the formulas of the products for each reaction below and WRITE them in the spaces provided, but do NOT balance the equations. Also, state the FULL name of the reaction type for each reaction.

	Products	Reaction Type
29. $\operatorname{Na}_{(s)} + \operatorname{Br}_{2(l)} \rightarrow$		
30. $CH_{4(g)} + O_{2(g)} \rightarrow$	_	
31. $\text{Al}_{(s)} + \text{CuCl}_{2(aq)} \rightarrow$		
32. $\operatorname{NaI}_{(aq)} + \operatorname{Pb(NO}_{3)}_{2(aq)} \rightarrow$		

Write balanced formula equations for the reactions in questions 33 and 34.

- 33. Aqueous ammonium sulfide and aqueous lead(II) nitrate are mixed together. They react to yield aqueous ammonium nitrate and solid lead(II) sulfide.
- 34. Copper metal is placed in a solution of silver nitrate. This produces aqueous copper(II) nitrate and silver metal.
- 35. The element nitrogen has two common isotopes: nitrogen-14 and nitrogen-16.
 - a) State how these two types of atoms are similar.
 - b) State how these two types of atoms are different.

Chemistry Answers

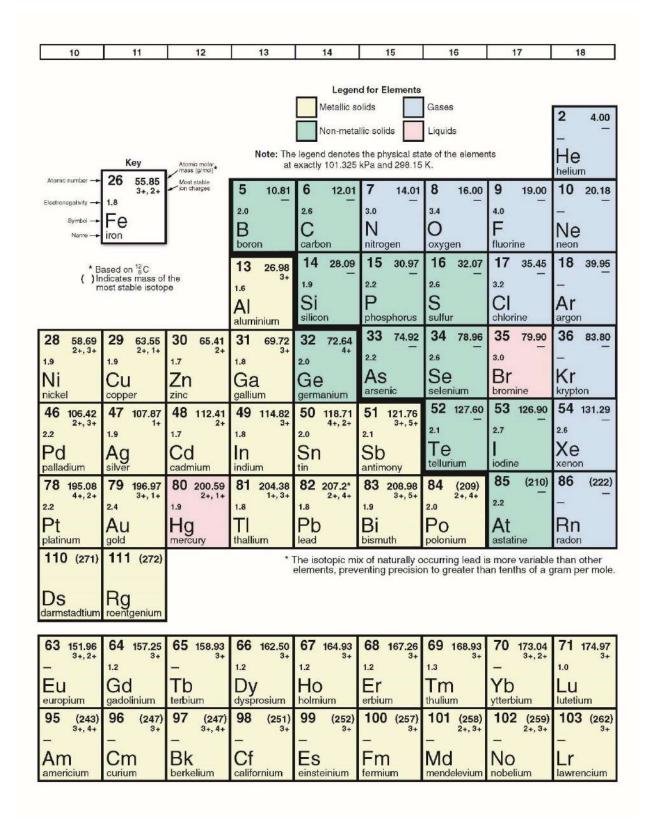
Section I. Multiple Choice

- 1. c
- 2. c
- 3. a
- 4. a
- 5. b
- 6. d
- 7. c
- 8. c
- 9. b
- 10. c
- 11. b
- 12. c
- 13. c
- 14. a
- 15. c

Section II. Skills

- 16. calcium bromide
- 17. gold(III) phosphate
- 18. dinitrogen tetroxide
- 19. ammonia
- 20. sulfuric acid
- 21. PbS_{2(s)}
- 22. CH_{4(g)}
- 23. SO_{3(g)}
- 24. HCl_(aq)
- 25. Fe₃N_{2(s)}

Section III. Response


- 26. 4, 1, 2
- 27. 1, 12, 8, 8
- 28. 4, 5, 4, 6
- 29. NaBr_(s) formation
- 30. $CO_{2(g)} + H_2O_{(g)}$ hydrocarbon comb 31. $AlCl_{3(aq)} + Cu_{(s)}$ single replacement hydrocarbon combustion

- 32. $NaNO_{3(aq)}^{Staq} + PbI_{2(s)}^{Staq}$ double replacement 33. $(NH_4)_2S_{(aq)}^{Staq} + Pb(NO_3)_{2(aq)}^{Staq} \rightarrow 2 NH_4NO_{3(aq)}^{Staq} + PbS_{(s)}^{Staq}$ 34. $Cu_{(s)}^{Staq} + 2 AgNO_{3(aq)}^{Staq} \rightarrow Cu(NO_3)_{2(aq)}^{Staq} + 2 Ag_{(s)}^{Staq}$
- a) Both atoms have the same number of protons or atomic number. 35.
 - b) One has 7 neutrons and the other has 8 neutrons. Their mass numbers are different.

Chemistry 11 Placement Test Data Booklet

Solubility of Some Common Ionic Compounds in Water at 25°C								
Ion	Group1 NH4 ⁺ H ₃ O ⁺ ,H ⁺	ClO ₃ - NO ₃ - ClO ₄ -	CH ₃ COO	Cl ⁻ Br ⁻ I ⁻	SO ₄ ² -	S ²⁻	OH-	PO ₄ ³ - SO ₃ ² - CO ₃ ² -
Solubility greater than or equal to 0.1 mol/L (very soluble)	all	all	most	most	most	Group1 Group2 NH ₄ ⁺	Group1 NH ₄ ⁺ Sr ²⁺ Ba ²⁺ Tl ⁺	Group1 NH ₄ ⁺
Solubility less than 0.1 mol/L (slightly soluble)	none	none	Ag ⁺ Hg ⁺	Ag ⁺ Pb ²⁺ Hg ⁺ Cu ⁺ Tl ⁺	Ca ²⁺ Sr ²⁺ Ba ²⁺ Ra ²⁺ Pb ²⁺ Ag ⁺	most	most	most

	2	3	4	5	6	7	8	9
		8	Ta	able of Co	nmon Pol	yatomic l	ons	
1 1.01		aceta	le (ethanoate) Ch	H ₃ COO ⁻ chro	mate C	2rO ₄ ²⁻ p	hosphate	PO ₄ 3-
1+,1-		ammo	onium Ni	H ₄ * dichi	romate C	Or ₂ O ₇ 2- hy	ydrogen phosphate	HPO ₄ 2-
2.2		benzo	sate C _e	H _s COO cyan	ide C	N⁻ d	ihydrogen phosphate	H ₂ PO ₄
H		borate			oxide C	DH ⁻ si	ilicate	SIO ₃ 2-
hydrogen	4	carbic			e K	O ₃ si	ulfate	SO ₄ ²⁻
3 6.94	4 9.01 2+	carbo	nate CC	D ₃ ²⁻ nitral	te N	IO ₃ h	ydrogen sulfate	HSO ₄
1.0	1.6	275930		CO _S nitrite			ulfite	SO ₃ ²⁻
Li	Be	perch		O ₄ oxala		AVERTAGE STATE OF	ydrogen sulfite	HSO ₃
lithium	beryllium	chlora					ydrogen sulfide	HS ⁻
11 22.99	12 24.31	chlori		78 %	-120		niccyanate	SCN ⁻ S ₂ O ₃ ²⁻
0.9	1.3	nypoc	hlorite O			/ ₂ ur ,,2− ,2−	niosulfate	S ₂ O ₃
Na	Mg			рега	eumo	2		
sodium	magnesium		2007		Sec			~
19 39.10	20 40.08	21 44.96	22 47.87	23 50.94	24 52.00	25 54.94	26 55.85	27 58.9
0.8	1.0	1.4	4+, 3+	5+, 4+	3+, 2+	2+, 4+	3+, 2+	2+, 3
κΙ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt
37 85.47	38 87.62	39 88.91	40 91.22	41 92.91	42 95.94	43 (98)	44 101.07	45 102.9
0.8	2+	3+	4+	5+,3+	2.2	` 7+	3+	2.3
ACTION AND ADDRESS OF THE PARTY	1.0	1.2	1.3	1.6 N.H.		2.1		
Rb rubidium	Sr	Y yttrium	Zr zirconium	Nb niobium	MO molybdenum	TC technetium	Ru	Rh
	56 137.33		72 178.49	1				
55 132.91	2+	57 138.91	12 1/8.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.2
0.8	0.9	1.1	1.3	1.5	1.7	1.9	2.2	2.2
Cs	Ba	La	Hf	Ta	W	Re	Os	lr
cesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	osmium	iridium
87 (223)	88 (226)	89 (227)	104 (261)	105 (262)	106 (266)	107 (264)	108 (277)	109 (268
0.7	0.9	1.1						
Fr I	Ra	Ac	Rf	Db	Sg	lBh	Hs	Mt
francium	radium	actinium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium
			\lanthan	ide and actinide				
				58 140.12 3+	59 140.91 3+	60 144.24	61 (145)	62 150.3
References Lide, D.R. 2005. CRC Handbook of Chemistry and Physics. 86 th ed. Boca Raton: CRC Press. Speight, James G. 2005. Lange's Handbook of Chemistry. 16 th ed. New York: McGraw-Hill, Inc.				1.1	1.1	1.1	-	1.2
				Ce	Pr	Nd	Pm	Sm
				cerium	praseodymium	neodymium	promethium	samarium
				90 232.04	91 231.04	92 238.03	93 (237)	94 (24
				4+	5+, 4+	6+, 4+	5+	4+, 6
	ion on atomic we	ights and		13	15	17	1.3	13
IUPAC commissi isotopic abundar	ion on atomic we nces. 2002. <u>http</u> :/AtWt/index.html.	://www.chem.		Th	Pa	1.7	Np	Pu

